Synopsis
Linear Digressions is a podcast about machine learning and data science. Machine learning is being used to solve a ton of interesting problems, and to accomplish goals that were out of reach even a few short years ago.
Episodes
-
Agile Development for Data Scientists, Part 1: The Good
19/08/2018 Duration: 25minIf you're a data scientist at a firm that does a lot of software building, chances are good that you've seen or heard engineers sometimes talking about "agile software development." If you don't work at a software firm, agile practices might be newer to you. In either case, we wanted to go through a great series of blog posts about some of the practices from agile that are relevant for how data scientists work, in hopes of inspiring some transfer learning from software development to data science. Relevant links: https://www.locallyoptimistic.com/post/agile-analytics-p1/ https://www.locallyoptimistic.com/post/agile-analytics-p2/ https://www.locallyoptimistic.com/post/agile-analytics-p3/
-
Re - Release: How To Lose At Kaggle
13/08/2018 Duration: 17minWe've got a classic for you this week as we take a week off for the dog days of summer. See you again next week! Competing in a machine learning competition on Kaggle is a kind of rite of passage for data scientists. Losing unexpectedly at the very end of the contest is also something that a lot of us have experienced. It's not just bad luck: a very specific combination of overfitting on popular competitions can take someone who is in the top few spots in the final days of a contest and bump them down hundreds of slots in the final tally.
-
Troubling Trends In Machine Learning Scholarship
06/08/2018 Duration: 29minThere's a lot of great machine learning papers coming out every day--and, if we're being honest, some papers that are not as great as we'd wish. In some ways this is symptomatic of a field that's growing really quickly, but it's also an artifact of strange incentive structures in academic machine learning, and the fact that sometimes machine learning is just really hard. At the same time, a high quality of academic work is critical for maintaining the reputation of the field, so in this episode we walk through a recent paper that spells out some of the most common shortcomings of academic machine learning papers and what we can do to make things better. Relevant links: https://arxiv.org/abs/1807.03341
-
Can Fancy Running Shoes Cause You To Run Faster?
29/07/2018 Duration: 28minThe stars aligned for me (Katie) this past weekend: I raced my first half-marathon in a long time and got to read a great article from the NY Times about a new running shoe that Nike claims can make its wearers run faster. Causal claims like this one are really tough to verify, because even if the data suggests that people wearing the shoe are faster that might be because of correlation, not causation, so I loved reading this article that went through an analysis of thousands of runners' data in 4 different ways. Each way has a great explanation with pros and cons (as well as results, of course), so be sure to read the article after you check out this episode! Relevant links: https://www.nytimes.com/interactive/2018/07/18/upshot/nike-vaporfly-shoe-strava.html
-
Compliance Bias
22/07/2018 Duration: 23minWhen you're using an AB test to understand the effect of a treatment, there are a lot of assumptions about how the treatment (and control, for that matter) get applied. For example, it's easy to think that everyone who was assigned to the treatment arm actually gets the treatment, everyone in the control arm doesn't, and that the two groups get their treatment instantaneously. None of these things happen in real life, and if you really care about measuring your treatment effect then that's something you want to understand and correct. In this post we'll talk through a great blog post that outlines this for mobile experiments. Oh, and Ben sings.
-
Rerelease: How to Find New Things to Learn
08/07/2018 Duration: 18minWe like learning on vacation. And we're on vacation, so we thought we'd re-air this episode about how to learn. Original Episode: https://lineardigressions.com/episodes/2017/5/14/how-to-find-new-things-to-learn Original Summary: If you're anything like us, you a) always are curious to learn more about data science and machine learning and stuff, and b) are usually overwhelmed by how much content is out there (not all of it very digestible). We hope this podcast is a part of the solution for you, but if you're looking to go farther (who isn't?) then we have a few new resources that are presenting high-quality content in a fresh, accessible way. Boring old PDFs full of inscrutable math notation, your days are numbered!
-
Rerelease: Space Codes
02/07/2018 Duration: 24minWe're on vacation on Mars, so we won't be communicating with you all directly this week. Though, if we wanted to, we could probably use this episode to help get started. Original Episode: http://lineardigressions.com/episodes/2017/3/19/space-codes Original Summary: It's hard to get information to and from Mars. Mars is very far away, and expensive to get to, and the bandwidth for passing messages with Earth is not huge. The messages you do pass have to traverse millions of miles, which provides ample opportunity for the message to get corrupted or scrambled. How, then, can you encode messages so that errors can be detected and corrected? How does the decoding process allow you to actually find and correct the errors? In this episode, we'll talk about three pieces of the process (Reed-Solomon codes, convolutional codes, and Viterbi decoding) that allow the scientists at NASA to talk to our rovers on Mars.
-
Rerelease: Anscombe's Quartet
25/06/2018 Duration: 16minWe're on vacation, so we hope you enjoy this episode while we each sip cocktails on the beach. Original Episode: http://lineardigressions.com/episodes/2017/6/18/anscombes-quartet Original Summary: Anscombe's Quartet is a set of four datasets that have the same mean, variance and correlation but look very different. It's easy to think that having a good set of summary statistics (like mean, variance and correlation) can tell you everything important about a dataset, or at least enough to know if two datasets are extremely similar or extremely different, but Anscombe's Quartet will always be standing behind you, laughing at how silly that idea is. Anscombe's Quartet was devised in 1973 as an example of how summary statistics can be misleading, but today we can even do one better: the Datasaurus Dozen is a set of twelve datasets, all extremely visually distinct, that have the same summary stats as a source dataset that, there's no other way to put this, looks like a dinosaur. It's an example of how datasets
-
Rerelease: Hurricanes Produced
18/06/2018 Duration: 28minNow that hurricane season is upon us again (and we are on vacation), we thought a look back on our hurricane forecasting episode was prudent. Stay safe out there.
-
GDPR
11/06/2018 Duration: 18minBy now, you have probably heard of GDPR, the EU's new data privacy law. It's the reason you've been getting so many emails about everyone's updated privacy policy. In this episode, we talk about some of the potential ramifications of GRPD in the world of data science.
-
Git for Data Scientists
03/06/2018 Duration: 22minIf you're a data scientist, chances are good that you've heard of git, which is a system for version controlling code. Chances are also good that you're not quite as up on git as you want to be--git has a strong following among software engineers but, in our anecdotal experience, data scientists are less likely to know how to use this powerful tool. Never fear: in this episode we'll talk through some of the basics, and what does (and doesn't) translate from version control for regular software to version control for data science software.
-
Analytics Maturity
20/05/2018 Duration: 19minData science and analytics are hot topics in business these days, but for a lot of folks looking to bring data into their organization, it can be hard to know where to start and what it looks like when they're succeeding. That was the motivation for writing a whitepaper on the analytics maturity of an organization, and that's what we're talking about today. In particular, we break it down into five attributes of an organization that contribute (or not) to their success in analytics, and what each of those mean and why they matter. Whitepaper here: bit.ly/analyticsmaturity
-
SHAP: Shapley Values in Machine Learning
13/05/2018 Duration: 19minShapley values in machine learning are an interesting and useful enough innovation that we figured hey, why not do a two-parter? Our last episode focused on explaining what Shapley values are: they define a way of assigning credit for outcomes across several contributors, originally to understand how impactful different actors are in building coalitions (hence the game theory background) but now they're being cross-purposed for quantifying feature importance in machine learning models. This episode centers on the computational details that allow Shapley values to be approximated quickly, and a new package called SHAP that makes all this innovation accessible.
-
Game Theory for Model Interpretability: Shapley Values
07/05/2018 Duration: 27minAs machine learning models get into the hands of more and more users, there's an increasing expectation that black box isn't good enough: users want to understand why the model made a given prediction, not just what the prediction itself is. This is motivating a lot of work into feature important and model interpretability tools, and one of the most exciting new ones is based on Shapley Values from game theory. In this episode, we'll explain what Shapley Values are and how they make a cool approach to feature importance for machine learning.
-
AutoML
30/04/2018 Duration: 15minIf you were a machine learning researcher or data scientist ten years ago, you might have spent a lot of time implementing individual algorithms like decision trees and neural networks by hand. If you were doing that work five years ago, the algorithms were probably already implemented in popular open-source libraries like scikit-learn, but you still might have spent a lot of time trying different algorithms and tuning hyperparameters to improve performance. If you're doing that work today, scikit-learn and similar libraries don't just have the algorithms nicely implemented--they have tools to help with experimentation and hyperparameter tuning too. Automated machine learning is here, and it's pretty cool.
-
CPUs, GPUs, TPUs: Hardware for Deep Learning
23/04/2018 Duration: 12minA huge part of the ascent of deep learning in the last few years is related to advances in computer hardware that makes it possible to do the computational heavy lifting required to build models with thousands or even millions of tunable parameters. This week we'll pretend to be electrical engineers and talk about how modern machine learning is enabled by hardware.
-
A Technical Introduction to Capsule Networks
16/04/2018 Duration: 31minLast episode we talked conceptually about capsule networks, the latest and greatest computer vision innovation to come out of Geoff Hinton's lab. This week we're getting a little more into the technical details, for those of you ready to have your mind stretched.
-
A Conceptual Introduction to Capsule Networks
09/04/2018 Duration: 14minConvolutional nets are great for image classification... if this were 2016. But it's 2018 and Canada's greatest neural networker Geoff Hinton has some new ideas, namely capsule networks. Capsule nets are a completely new type of neural net architecture designed to do image classification on far fewer training cases than convolutional nets, and they're posting results that are competitive with much more mature technologies. In this episode, we'll give a light conceptual introduction to capsule nets and get geared up for a future episode that will do a deeper technical dive.
-
Convolutional Neural Nets
02/04/2018 Duration: 21minIf you've done image recognition or computer vision tasks with a neural network, you've probably used a convolutional neural net. This episode is all about the architecture and implementation details of convolutional networks, and the tricks that make them so good at image tasks.