Linear Digressions

  • Author: Vários
  • Narrator: Vários
  • Publisher: Podcast
  • Duration: 96:08:51
  • More information

Informações:

Synopsis

Linear Digressions is a podcast about machine learning and data science. Machine learning is being used to solve a ton of interesting problems, and to accomplish goals that were out of reach even a few short years ago.

Episodes

  • Sold! Auctions (Part 2)

    25/01/2016 Duration: 17min

    The Google ads auction is a special kind of auction, one you might not know as well as the famous English auction (which we talked about in the last episode). But if it's what Google uses to sell billions of dollars of ad space in real time, you know it must be pretty cool. Relevant links: https://en.wikipedia.org/wiki/English_auction http://people.ischool.berkeley.edu/~hal/Papers/2006/position.pdf http://www.benedelman.org/publications/gsp-060801.pdf

  • Going Once, Going Twice: Auctions (Part 1)

    22/01/2016 Duration: 12min

    The Google AdWords algorithm is (famously) an auction system for allocating a massive amount of online ad space in real time--with that fascinating use case in mind, this episode is part one in a two-part series all about auctions. We dive into the theory of auctions, and what makes a "good" auction. Relevant links: https://en.wikipedia.org/wiki/English_auction http://people.ischool.berkeley.edu/~hal/Papers/2006/position.pdf http://www.benedelman.org/publications/gsp-060801.pdf

  • Chernoff Faces and Minard Maps

    18/01/2016 Duration: 15min

    A data visualization extravaganza in this episode, as we discuss Chernoff faces (you: "faces? huh?" us: "oh just you wait") and the greatest data visualization of all time, or at least the Napoleonic era. Relevant links: http://lya.fciencias.unam.mx/rfuentes/faces-chernoff.pdf https://en.wikipedia.org/wiki/Charles_Joseph_Minard

  • t-SNE: Reduce Your Dimensions, Keep Your Clusters

    15/01/2016 Duration: 16min

    Ever tried to visualize a cluster of data points in 40 dimensions? Or even 4, for that matter? We prefer to stick to 2, or maybe 3 if we're feeling well-caffeinated. The t-SNE algorithm is one of the best tools on the market for doing dimensionality reduction when you have clustering in mind. Relevant links: https://www.youtube.com/watch?v=RJVL80Gg3lA

  • The [Expletive Deleted] Problem

    11/01/2016 Duration: 09min

    The town of [expletive deleted], England, is responsible for the clbuttic [expletive deleted] problem. This week on Linear Digressions: we try really hard not to swear too much. Related links: https://en.wikipedia.org/wiki/Scunthorpe_problem https://www.washingtonpost.com/news/worldviews/wp/2016/01/05/where-is-russia-actually-mordor-in-the-world-of-google-translate/

  • Unlabeled Supervised Learning--whaaa?

    08/01/2016 Duration: 12min

    In order to do supervised learning, you need a labeled training dataset. Or do you...? Relevant links: http://www.cs.columbia.edu/~dplewis/candidacy/goldman00enhancing.pdf

  • Hacking Neural Nets

    05/01/2016 Duration: 15min

    Machine learning: it can be fooled, just like you or me. Here's one of our favorite examples, a study into hacking neural networks. Relevant links: http://arxiv.org/pdf/1412.1897v4.pdf

  • Zipf's Law

    31/12/2015 Duration: 11min

    Zipf's law is related to the statistics of how word usage is distributed. As it turns out, this is also strikingly reminiscent of how income is distributed, and populations of cities, and bug reports in software, as well as tons of other phenomena that we all interact with every day. Relevant links: http://economix.blogs.nytimes.com/2010/04/20/a-tale-of-many-cities/ http://arxiv.org/pdf/cond-mat/0412004.pdf https://terrytao.wordpress.com/2009/07/03/benfords-law-zipfs-law-and-the-pareto-distribution/

  • Indie Announcement

    30/12/2015 Duration: 01min

    We've gone indie! Which shouldn't change anything about the podcast that you know and love, but we're super excited to keep bringing you Linear Digressions as a fully independent podcast. Some links mentioned in the show: https://twitter.com/lindigressions https://twitter.com/benjaffe https://twitter.com/multiarmbandit https://soundcloud.com/linear-digressions http://lineardigressions.com/

  • Portrait Beauty

    27/12/2015 Duration: 11min

    It's Da Vinci meets Skynet: what makes a portrait beautiful, according to a machine learning algorithm. Snap a selfie and give us a listen.

  • The Cocktail Party Problem

    18/12/2015 Duration: 12min

    Grab a cocktail, put on your favorite karaoke track, and let’s talk some more about disentangling audio data!

  • A Criminally Short Introduction to Semi Supervised Learning

    04/12/2015 Duration: 09min

    Because there are more interesting problems than there are labeled datasets, semi-supervised learning provides a framework for getting feedback from the environment as a proxy for labels of what's "correct." Of all the machine learning methodologies, it might also be the closest to how humans usually learn--we go through the world, getting (noisy) feedback on the choices we make and learn from the outcomes of our actions.

  • Thresholdout: Down with Overfitting

    27/11/2015 Duration: 15min

    Overfitting to your training data can be avoided by evaluating your machine learning algorithm on a holdout test dataset, but what about overfitting to the test data? Turns out it can be done, easily, and you have to be very careful to avoid it. But an algorithm from the field of privacy research shows promise for keeping your test data safe from accidental overfitting

  • The State of Data Science

    10/11/2015 Duration: 15min

    How many data scientists are there, where do they live, where do they work, what kind of tools do they use, and how do they describe themselves? RJMetrics wanted to know the answers to these questions, so they decided to find out and share their analysis with the world. In this very special interview episode, we welcome Tristan Handy, VP of Marketing at RJMetrics, who will talk about "The State of Data Science Report."

  • Data Science for Making the World a Better Place

    06/11/2015 Duration: 09min

    There's a good chance that great data science is going on close to you, and that it's going toward making your city, state, country, and planet a better place. Not all the data science questions being tackled out there are about finding the sleekest new algorithm or billion-dollar company idea--there's a whole world of social data science that just wants to make the world a better place to live in.

  • Kalman Runners

    29/10/2015 Duration: 14min

    The Kalman Filter is an algorithm for taking noisy measurements of dynamic systems and using them to get a better idea of the underlying dynamics than you could get from a simple extrapolation. If you've ever run a marathon, or been a nuclear missile, you probably know all about these challenges already. By the way, we neglected to mention in the episode: Katie's marathon time was 3:54:27!

  • Neural Net Inception

    23/10/2015 Duration: 15min

    When you sleep, the neural pathways in your brain take the "white noise" of your resting brain, mix in your experiences and imagination, and the result is dreams (that is a highly unscientific explanation, but you get the idea). What happens when neural nets are put through the same process? Train a neural net to recognize pictures, and then send through an image of white noise, and it will start to see some weird (but cool!) stuff.

  • Benford's Law

    16/10/2015 Duration: 17min

    Sometimes numbers are... weird. Benford's Law is a favorite example of this for us--it's a law that governs the distribution of the first digit in certain types of numbers. As it turns out, if you're looking up the length of a river, the population of a country, the price of a stock... not all first digits are created equal.

  • Guinness

    07/10/2015 Duration: 14min

    Not to oversell it, but the student's t-test has got to have the most interesting history of any statistical test. Which is saying a lot, right? Add some boozy statistical trivia to your arsenal in this epsiode.

  • PFun with P Values

    02/09/2015 Duration: 17min

    Doing some science, and want to know if you might have found something? Or maybe you've just accomplished the scientific equivalent of going fishing and reeling in an old boot? Frequentist p-values can help you distinguish between "eh" and "oooh interesting". Also, there's a lot of physics in this episode, nerds.

page 13 from 15