Synopsis
A fun take on the latest science news with enough data to sink your teeth into. Lagrange Point goes beyond the glossy summary and gets in depth with the research from across the world.
Episodes
-
Episode 516 - How plants handle too much or too little light
02/01/2023 Duration: 18minToo much or too little light can cause serious problems for plants. Light levels are not simply a feast or famine equation when it comes to photosynthesis. Plants must carefully manage the amount of light coming in to ensure smooth photosynthesis. The way genes in leaves responding to rapidly changing light conditions help them make the most of photosynthesis. Your eyes have to rapidly respond to opening curtains in a dark room, just like leaves of a plant. What about plants that have abandoned the need for light at all? Can a plant survive or thrive without light or photosynthesis? Thekla von Bismarck, Kübra Korkmaz, Jeremy Ruß, Kira Skurk, Elias Kaiser, Viviana Correa Galvis, Jeffrey A. Cruz, Deserah D. Strand, Karin Köhl, Jürgen Eirich, Iris Finkemeier, Peter Jahns, David M. Kramer, Ute Armbruster. Light acclimation interacts with thylakoid ion transport to govern the dynamics of photosynthesis in Arabidopsis. New Phytologist, 2022; 237 (1): 160 DOI: 10.1111/nph.18534 Kenji Suetsugu, Shun K. Hirota, Tian
-
Episode 515 - Do you really need oxygen for oxidation
26/12/2022 Duration: 13minHow does chemistry change when you travel to another planet? When it comes to scientific experiments often we can be hampered by our own experience. Just because something is abundant on earth does not meant that it's a universal constant. Out of this world chemistry is hard to get your head around and it requires thinking outside the box. Is it possible to have oxidize minerals without oxygen? Kaushik Mitra, Eleanor L. Moreland, Greg J. Ledingham, Jeffrey G. Catalano. Formation of manganese oxides on early Mars due to active halogen cycling. Nature Geoscience, 2022; DOI: 10.1038/s41561-022-01094-y
-
Episode 514 - Pushing water to the limits on earth and in space
19/12/2022 Duration: 11minWhat happens when you push water to the limits on earth and in Space? Water has really weird properties especially when it gets really cold. How can we understand and model the behaviour when it moves to fast for us to capture? How do droplets form and why do you need the ISS to study it? What can microgravity tell us about the way droplets form? Thomas E. Gartner, Pablo M. Piaggi, Roberto Car, Athanassios Z. Panagiotopoulos, Pablo G. Debenedetti. Liquid-Liquid Transition in Water from First Principles. Physical Review Letters, 2022; 129 (25) DOI: 10.1103/PhysRevLett.129.255702 J. McCraney, J. Ludwicki, J. Bostwick, S. Daniel, P. Steen. Coalescence-induced droplet spreading: Experiments aboard the International Space Station. Physics of Fluids, 2022; 34 (12): 122110 DOI: 10.1063/5.0125279
-
Episode 513 - An eerie glow in the Solar System
12/12/2022 Duration: 16minHow do you measure the solar system and the universe whilst being inside of it? Too much light is a problem for astronomers and our solar system has it's own glow. If you take away all known light sources form the solar system, there is still a faint glow. We know about background radiation, but what about the solar systems background lighting? How can you test the curvature of the universe? To answer universal scale questions you need to start small. Really small. Using Bose Einstein condensates and getting really cold we can simulate curved universes in a molecule scale. Timothy Carleton, Rogier A. Windhorst, Rosalia O’Brien, Seth H. Cohen, Delondrae Carter, Rolf Jansen, Scott Tompkins, Richard G. Arendt, Sarah Caddy, Norman Grogin, Scott J. Kenyon, Anton Koekemoer, John MacKenty, Stefano Casertano, Luke J. M. Davies, Simon P. Driver, Eli Dwek, Alexander Kashlinsky, Nathan Miles, Nor Pirzkal, Aaron Robotham, Russell Ryan, Haley Abate, Hanga Andras-Letanovszky, Jessica Berkheimer, Zak Goisman, Daniel Hennin
-
Episode 512 - Analyzing aftershocks and predicting earthquakes
05/12/2022 Duration: 18minForecasting an earthquake is serious business, but it's not like the weather. Why are earthquakes so hard to predict? Knowing when an earthquake will occur is hard enough, but what about predicting aftershocks? Aftershocks can create huge stress and compound damage after a quake so what can be done to predict them? Building huge scale models out of granite can help researchers better understand aftershocks. Sliding slabs of granite, plastic blocks and quartz dust help researchers understand aftershocks. When an earthquake combines with another disaster, the compound effect is devastating. How good are modern risk assessment tools at managing compound disasters? Sara Beth L. Cebry, Chun-Yu Ke, Srisharan Shreedharan, Chris Marone, David S. Kammer, Gregory C. McLaskey. Creep fronts and complexity in laboratory earthquake sequences illuminate delayed earthquake triggering. Nature Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-34397-0 Misato Uehara, Kuei-Hsien Liao, Yuki Arai, Yuta Masakane. Could the magni
-
Episode 511 - How the earliest brains developed and handle touch
28/11/2022 Duration: 16minPeering into the history of brains with some amazing tiny fossils. How did the earliest brains develop? Is a head just an extension of a segmented body or something else entirely? How did the first brains and nervous systems evolve in arthropods. How does your body process the sense of touch? The faintest sensations of touch are handled by specialist cells in your spinal cord. How do your brain stem and spinal cord help your body process the senses? Nicholas J. Strausfeld, Xianguang Hou, Marcel E. Sayre, Frank Hirth. The lower Cambrian lobopodian Cardiodictyon resolves the origin of euarthropod brains. Science, 2022; 378 (6622): 905 DOI: 10.1126/science.abn6264 Turecek, J., Lehnert, B.P. & Ginty, D.D. The encoding of touch by somatotopically aligned dorsal column subdivisions. Nature, 2022 DOI: 10.1038/s41586-022-05470-x Anda M. Chirila, Genelle Rankin, Shih-Yi Tseng, Alan J. Emanuel, Carmine L. Chavez-Martinez, Dawei Zhang, Christopher D. Harvey, David D. Ginty. Mechanoreceptor signal convergence and tr
-
Episode 510 - Fungi spreading across the planet and wiping out toxic soils
21/11/2022 Duration: 17minFungi have an amazing ability to spread across continents but stay linked as a family lineage. Fungi can adapt to specific geographic niches in the same way as grapes. Different families of highly specialized mushrooms grow side by side across continents. How can fungi protect the plants it's attached to? Fungi often get a bad rap in farming, but they can be used to detoxify soils. Removing mercury and boosting crops; is there anything fungi can't do? Keaton Tremble, J. I. Hoffman, Bryn T. M. Dentinger. Contrasting continental patterns of adaptive population divergence in the holarctic ectomycorrhizal fungus Boletus edulis. New Phytologist, 2022; DOI: 10.1111/nph.18521 Congcong Wu, Dan Tang, Jin Dai, Xingyuan Tang, Yuting Bao, Jiali Ning, Qing Zhen, Hui Song, Raymond J. St. Leger, Weiguo Fang. Bioremediation of mercury-polluted soil and water by the plant symbiotic fungus Metarhizium robertsii. Proceedings of the National Academy of Sciences, 2022; 119 (47) DOI: 10.1073/pnas.2214513119
-
Episode 509 - What connects spicy food, proteins and your gut
14/11/2022 Duration: 17minHow is your gut connected to the rest of your body? How does your nervous system connect to your gut? How can you sense pain inside of your gut? The bacteria that live inside your gut can call for help when under pressure. With the wrong balance of bacteria or signalling proteins our guts can be more prone for inflammation and damage. How can bad bacteria escape from the gut and evade detection? What enables some bacteria to sneak out of the intestine and wreck havoc. Wen Zhang, Mengze Lyu, Nicholas J. Bessman, Zili Xie, Mohammad Arifuzzaman, Hiroshi Yano, Christopher N. Parkhurst, Coco Chu, Lei Zhou, Gregory G. Putzel, Ting-Ting Li, Wen-Bing Jin, Jordan Zhou, Hongzhen Hu, Amy M. Tsou, Chun-Jun Guo, David Artis. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection. Cell, 2022; DOI: 10.1016/j.cell.2022.09.008 Yusibeska Ramos, Stephanie Sansone, Sung-Min Hwang, Tito A. Sandoval, Mengmeng Zhu, Guoan Zhang, Juan R. Cubillos-Ruiz, Diana K. Morales. Remodeling of the Enterococ
-
Episode 508 - Finding your way as a fish along rivers and into the deep
07/11/2022 Duration: 17minHow can fish keep themselves stable in a fast flowing river? What's the best way to stay on track as a fish? To swim straight ahead fish often end up staring downwards. The riverbed is way easier to track than a fast flowing current. How did fish manage to make their way into the deepest parts of the ocean? What climatic factors drove fish to explore deeper and deeper? What changed in Earth's history to encourage fish to thrive in the deepest parts of oceans? Emma Alexander, Lanya T. Cai, Sabrina Fuchs, Tim C. Hladnik, Yue Zhang, Venkatesh Subramanian, Nicholas C. Guilbeault, Chinnian Vijayakumar, Muthukumarasamy Arunachalam, Scott A. Juntti, Tod R. Thiele, Aristides B. Arrenberg, Emily A. Cooper. Optic flow in the natural habitats of zebrafish supports spatial biases in visual self-motion estimation. Current Biology, 2022; DOI: 10.1016/j.cub.2022.10.009 Elizabeth Christina Miller, Christopher M. Martinez, Sarah T. Friedman, Peter C. Wainwright, Samantha A. Price, Luke Tornabene. Alternating regimes of shallo
-
Episode 507 - Peering beneath Mars’ surface
31/10/2022 Duration: 16minHow does a single sensor help change your outlook on a planet? A single small seismometer on Mars can help understand Mars' past, present and future. What do an ultrasound and Mars have in common? Both can use a single sensor to peer deep inside. Listening to the echoes of marsquakes helps researchers understand what's in Mars' core. Modelling the inside of Mars' core helps researchers understand its past and future. Mars is often thought to be volcanically dead, but there are signs of some activity. A cluster of marsquakes can help researchers find evidence of vulcanism on Mars. Sheng Wang, Hrvoje Tkalčić. Scanning for planetary cores with single-receiver intersource correlations. Nature Astronomy, 2022; DOI: 10.1038/s41550-022-01796-8 Simon C. Stähler, Anna Mittelholz, Cleément Perrin, Taichi Kawamura, Doyeon Kim, Martin Knapmeyer, Géraldine Zenhäusern, John Clinton, Domenico Giardini, Philippe Lognonné, W. Bruce Banerdt. Tectonics of Cerberus Fossae unveiled by marsquakes. Nature Astronomy, 2022; DOI: 10.
-
Episode 506 - Assimilating all microbes in it’s path to chow down on Methane
24/10/2022 Duration: 15minHow have microbes changed the course of life on our planet? How has our atmosphere changed as a result of bacteria and archaea? Assimilation can help enhance single cellular life. Archaea can collect long strings of extra genes just in case. Finding the right gene at the right moment can help Archaea make the most of available food. Basem Al-Shayeb, Marie C. Schoelmerich, Jacob West-Roberts, Luis E. Valentin-Alvarado, Rohan Sachdeva, Susan Mullen, Alexander Crits-Christoph, Michael J. Wilkins, Kenneth H. Williams, Jennifer A. Doudna, Jillian F. Banfield. Borgs are giant genetic elements with potential to expand metabolic capacity. Nature, 2022; DOI: 10.1038/s41586-022-05256-1
-
Episode 505 - Complex ocean currents sustaining life across the depths
17/10/2022 Duration: 15minOcean currents can have global impacts shaping our climate and life in the seas and onshore. How do the ocean currents circulate and vary not just on the surface but beneath the waves? It's easy to picture different layers of clouds, but the same is true for our oceans. Large circulating patterns of currents called Gyres govern the oceans. Tiny phytoplankton keep our oceans alive but how do they get enough food themselves? The middle of a gyre gets baked in sun and seems to lack nutrient sources, so how do microbes survive there? When phytoplankton die they rain down nutrients and carbon to lower layers of the ocean as marine snow. Mukund Gupta, Richard G. Williams, Jonathan M. Lauderdale, Oliver Jahn, Christopher Hill, Stephanie Dutkiewicz, Michael J. Follows. A nutrient relay sustains subtropical ocean productivity. Proceedings of the National Academy of Sciences, 2022; 119 (41) DOI: 10.1073/pnas.2206504119
-
Episode 504 - Looking inside living cells with Bioorthogonal chemistry
10/10/2022 Duration: 18minA big prize like the Nobel for Chemistry doesn't appear out of nowhere. To win a Nobel Prize, a lot of team work in laboratories and across the world has to come together. We find out about the research that led towards the Nobel Prize for chemistry and how it grew. How does Click Chemistry solve the problem of messy and complicated reactions? How do you look inside a cell when it's working without destroying it? How can you get precise tracking of cells behavior using Bioorthogonal chemistry. Castelvecchi, D. and Ledford, H., 2022. Chemists who invented revolutionary ‘click’ reactions win Nobel. [online] Nature.com. Available at: [Accessed 8 October 2022]. Ramström, O., 2022. CLICK CHEMISTRY A N D BIOORTHOGONAL CHEMISTRY. [online] Nobelprize.org. Available at: [Accessed 8 October 2022]. Zhang, H., 2022. Nobel Prize: How click chemistry and bioorthogonal chemistry are transforming the pharmaceutical and material industries. [online] The Conversation. Available at: [Accessed 8 October 2022].
-
Episode 503 - Blending nanotubes and living cells
03/10/2022 Duration: 15minCarbon nanotubes have amazing mechanical and optical properties, but can they be combined with living cells? Carbon nanotubes can be used to convey light to precise places deep inside cells and tissue. If you blend carbon nanotubes with living cells you can use them to get a precise and stable look inside a cell. Getting a carbon nanotube to be accepted by mammalian cells is easy, but that’s not the case with bacteria. Bacteria are picky, but with the right charge they can bond with a carbon nanotube. Once carbon nanotubes have been absorbed into a cell you can bring light out for imaging, but also carry light in. Carrying light inside a carbon nantoube into bacteria can boost their ability to photosynthesize. Alessandra Antonucci, Melania Reggente, Charlotte Roullier, Alice J. Gillen, Nils Schuergers, Vitalijs Zubkovs, Benjamin P. Lambert, Mohammed Mouhib, Elisabetta Carata, Luciana Dini, Ardemis A. Boghossian. Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity gen
-
Episode 502 - Ignobel prizes ’22 - Blind dates and Mother Ducks
26/09/2022 Duration: 14minWe celebrate the Ignobel prizes for 2022 with science that makes you laugh and then think. What connects a Fish, ducks and slipstream racing? How do mother ducks manage to keep all their ducklings in tow? Does swimming in formation help the ducks save energy? What's the best spot in the slipstream to be? We all know following in the slipstream is good, but if you're 3 or more back you can literally get pulled along. Complex fluid mechanics makes swimming in a line a way for a mother duck to pull the ducklings along. What happens physically when you find someone who is a good match? Is eye contact or heart rate a better measure of having a 'spark' with someone new? Wave-Riding and Wave-Passing by Ducklings in Formation Swimming,” Zhi-Ming Yuan, Minglu Chen, Laibing Jia, Chunyan Ji, and Atilla Incecik, Journal of Fluid Mechanics, vol. 928, no. R2, 2021. “Energy Conservation by Formation Swimming: Metabolic Evidence from Ducklings,” Frank E. Fish, in the book Mechanics and Physiology of Animal Swimming, 1994, p
-
Episode 501 - The journey of the mandarin
19/09/2022 Duration: 17minMandarin oranges are very closely related but also incredibly diverse. A quirk of cloning means we can accurately trace the journey of all mandarins back to their origins in Hunan province. Mandarins come in so many shapes and sizes and are used to celebrate by many cultures, but they all share a lot in common. Oregano and Thyme both produce some great smells, but these chemicals can carry a useful punch. How do Oregano and Thyme produce chemicals with antibacterial properties? Sandra T. Krause, Pan Liao, Christoph Crocoll, Benoît Boachon, Christiane Förster, Franziska Leidecker, Natalie Wiese, Dongyan Zhao, Joshua C. Wood, C. Robin Buell, Jonathan Gershenzon, Natalia Dudareva, Jörg Degenhardt. The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenase. Proceedings of the National Academy of Sciences, 2021; 118 (52): e2110092118 DOI: 10.1073/pnas.2110092118 Guohong Albert Wu, Chikatoshi Sugimoto, Hideyasu Kinjo, Chika Azama, Fumimasa
-
Episode 500 - Forest helping pump water and create rain
12/09/2022 Duration: 19minPlants harness the energy from the sun for so much more than photosynthesis. You have a beating hart to pump around your blood, but what do plants. Plants' vascular systems aren't pressurized so how do they power their circulation? Just how much energy do plants use globally each year to pump water out of the ground and into their leaves? Plants use incredible amounts of energy each year just to pump water out of the ground into their leaves. The fresh scents of plants are organic compounds that can reveal a lot about a plants condition. The scents of plants can play a role in influencing the climate around them. Gregory R. Quetin, Leander D. L. Anderegg, Alexandra G. Konings, Anna T. Trugman. Quantifying the Global Power Needed for Sap Ascent in Plants. Journal of Geophysical Research: Biogeosciences, 2022; 127 (8) DOI: 10.1029/2022JG006922 Joseph Byron, Juergen Kreuzwieser, Gemma Purser, Joost van Haren, S. Nemiah Ladd, Laura K. Meredith, Christiane Werner, Jonathan Williams. Chiral monoterpenes reveal for
-
Episode 499 - Air and atmospheres on exoplanets
05/09/2022 Duration: 18minCO2 gets a lot of bad press on earth, but in space, it could actually be incredibly helpful. On Mars, the Perseverance mission turned CO2 into Oxygen just like a tree. Making air on Mars requires a bit of Moxie and Perseverance. Mar's atmosphere may be thin, highly variable and full of CO2 but it can be harnessed to produce Oxygen. Could future mission to Mars make their own oxygen on the surface of Mars? Finding CO2 on exoplanets has been incredibly hard but the JWST helps shed light on this universal gas. Incredible hot, massive but not super dense, the Hot Jupiter WASP-39b becomes the latest target of the JWST. What can a hot Jupiter like WASP-39b teach us about exoplanet formation? The JWST Transiting Exoplanet Community Early Release Science Team et al. Identification of carbon dioxide in an exoplanet atmosphere. Nature (in press), 2022 [abstract] Jeffrey A. Hoffman, Michael H. Hecht, Donald Rapp, Joseph J. Hartvigsen, Jason G. Soohoo, Asad M. Aboobaker, John B. Mcclean, Andrew M. Liu, Eric D. Hinterman,
-
Episode 498 - Proteins, MRNA and fighting back against cancer
29/08/2022 Duration: 12minHow can we develop new treatments to tackle antibiotic resistance and tumors. Antibiotics were the miracle of public health in the 20th century, but how can we establish new treatments into the 21st. Find the right protein and you can stop bacteria in its tracks by splitting it in two. New treatments can tackle antibiotic resistant bacteria by using proteins to break them in two. Cancer vaccines are benefiting from the mRNA revolution. A challenge with vaccines is that they can end up in the liver, so how do you get them to deliver their instructions more effectively. Using special lipid nano particles, cancer mRNA vaccines can target the lymph nodes making for more powerful vaccines. Shouya Feng, Daniel Enosi Tuipulotu, Abhimanu Pandey, Weidong Jing, Cheng Shen, Chinh Ngo, Melkamu B. Tessema, Fei-Ju Li, Daniel Fox, Anukriti Mathur, Anyang Zhao, Runli Wang, Klaus Pfeffer, Daniel Degrandi, Masahiro Yamamoto, Patrick C. Reading, Gaetan Burgio, Si Ming Man. Pathogen-selective killing by guanylate-binding prote
-
Episode 497 - Wearable med-tech inside and out
22/08/2022 Duration: 18minWearable medical devices inside and outside of your body. Understanding what's happening inside your body can be tricky. Lugging around a scanning device with you all day isn't practical, but how can doctors tell what's happening in your daily life? Want to know what your organs are doing when you go for a jog or live your daily life? Wearable ultrasonic patches can give precise and long term ultrasounds making precise medicine possible. Stimulating nerves is a useful treatment for some conditions like Parkinson's or epilepsy but are very invasive. How can you use magnets to make these treatments much more friendly. Chonghe Wang, Xiaoyu Chen, Liu Wang, Mitsutoshi Makihata, Hsiao-Chuan Liu, Tao Zhou, Xuanhe Zhao. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science, 2022; 377 (6605): 517 DOI: 10.1126/science.abo2542 Joshua C. Chen, Peter Kan, Zhanghao Yu, Fatima Alrashdan, Roberto Garcia, Amanda Singer, C. S. Edwin Lai, Ben Avants, Scott Crosby, Zhongxi Li, Boshuo Wang, Michelle